
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 29: 877–895 (1999)

A THREE-DIMENSIONAL HYBRID FINITE
ELEMENT–VOLUME TRACKING MODEL FOR MOULD

FILLING IN CASTING PROCESSES

D.M. GAO*
Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne, Boucher6ille,

Quebec J4B 6Y4, Canada

SUMMARY

Metal casting is a complicated process in which flow momentum plays a crucial role in the mould filling
process due to the high velocity of the liquid metal. Inertia and gravity effects may cause splashing,
jetting or undesirable filling of the metal flow into the mould cavity. When considering complex parts, the
accurate prediction of mould filling behaviour using empirical knowledge and intuition is nearly
impossible. Therefore, numerical modelling and simulation are essential to predict such a complex
physical problem and assist in part with mould design. A mould filling analysis can help the mould
designer to determine the size and location of the gate as well as a proper runner system design for
ensuring a complete and balanced filling of the part. Such an analysis can also be used to predict
potential product defects, such as air entrapment, porosities, and help in correct positioning of overflows
and venting systems. A three-dimensional finite element model combined with a volume tracking method
has been developed in this work to simulate the cavity filling for casting processes. A mixed formulation
based on a four node tetrahedral element with a bubble function at the centroid (P1+/P1) is employed
to solve the flow equations. Such a finite element provides a small dimension of the element matrices and
satisfies the Brezzi–Babuska condition to ensure a stable solution of the Navier–Stokes equations. A slip
boundary condition combined with a friction model is implemented to better simulate the metal flow near
the mould walls. An algebraic model is used to account for the turbulence effects during the mould
filling. The flow fronts are tracked by a volume tracking method developed for the tetrahedral elements.
This method can handle complicated flow front shapes and complex situations like merging and
separation of flow fronts. The combination of a volume tracking technique with a FEM flow solver in
three-dimensional unstructured meshes constitutes the major feature of this model. Examples of the filling
simulations are presented to illustrate the capabilities of the numerical model. Copyright © 1999 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Metal casting is a complicated process that involves the high speed flow of a liquid metal filling
into three-dimensional complex geometries. The metal flow during filling behaves in a very
complex manner with phenomena such as frequent vortex formation, flow front merging and
breaking, etc. The flow fronts directly affected by a such complex flow behaviour have
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generally very distorted shapes. Furthermore, the flow may simultaneously be subject to
abrupt changes in direction and dimensions, which often result in the formation of undesirable
isolated air pockets (also referred to as air entrapment) and consequently casting defects. When
considering complex parts, the accurate prediction of mould filling behaviour using empirical
knowledge and intuition is nearly impossible. Therefore, numerical modelling and simulation
become an attractive approach to determine accurately the flow front shapes and locations, as
well as the flow characteristics during the entire filling process.

The numerical tools for simulating casting processes have been increasingly employed in the
casting industry in order to understand and improve casting techniques. The numerical
simulations allow the designer to analyse and visualise the complete casting process from the
metal injection to the final product. The detailed information on the flow, heat transfer and
residual stress behaviour can be used to evaluate the feasibility of the mould/part design and
help the optimisation of the operating conditions.

As far as the modelling of the mould filing is concerned, the precise tracking of the flow
fronts of arbitrary shape and a robust algorithm of highly non-linear flow with moving
interfaces are the major challenges [1]. In the case of the casting process, it becomes even more
critical because the high speed flow is often associated with the appearance of the turbulence
phenomenon and the geometrical complexity of the part. In addition, the coupling between a
high speed viscous flow and the dynamic change of moving interface locations often leads to
unstable solutions. Therefore, a numerical model that combines an accurate flow front
tracking method and a robust flow solution is essential in order to obtain a true prediction of
the filling behaviour. Since the mould filling can be considered as a moving interface problem,
no distinction is made between the ‘flow front’ and the ‘moving interface’ in the following
discussion.

Over the past 20 years, researchers have put a lot of effort into developing various numerical
models to simulate the filling processes, including the heat transfer behaviour. The majority of
these models are constructed based on the fixed mesh concept within the finite element or finite
difference frameworks [2–12]. Hirt et al. [13] first introduced the volume of fluid (VOF)
method to simulate the moving interface problems. This method has been applied increasingly
to mould filling problems, mainly with the finite difference method [6,8,10,11]. The VOF
method is considered the most significant and most referred to work among the front tracking
methods in engineering applications. It is classified as one of the three pioneer volume tracking
methods [14]. The basic idea of the VOF method and other volume tracking methods is to
evaluate the fluid quantity flowing in/exiting from each element to obtain a new fluid volume
fraction field, and consequently the moving interface positions. A reconstruction of the moving
interface is necessary to ensure an accurate calculation of the fluid quantity flowing across the
faces of the interface elements that contain the moving interfaces. The reconstruction of the
moving interface by the VOF method has been improved in many aspects [14–16]. Rider et al.
[14] extended this method to unstructured meshes in two and three dimensions. Recently, it has
been used in the finite element framework to solve two-dimensional free-surface and moving
boundary problems [17]. For casting applications, the volume tracking methods have been
proven to be capable of tracking the flow front of arbitrary shapes for complex problems
involving front distortion, breaking, etc. Another interesting alternative for tracking the
moving interfaces is referred to as pseudo-concentration equation approach, often used with
the finite element method. In 1987, Thompson first introduced this idea for creeping flows with
interfaces [18]. The approach consists of using a pseudo-concentration function defined in the
entire cavity domain and solving directly a hyperbolic equation to determine the moving
interface movement. A smoothing technique was implemented to transform the concentration
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function into a continuous function. The moving interface is represented by a specific value of
the pseudo-concentration function. The flow solution in the empty area (or air) is needed to
obtain a correct solution of the hyperbolic equation. Large differences of the material
properties, such as density and viscosity between the liquid and the air, have to be dealt with
when solving the flow equations. This approach has been adapted and improved by other
researchers [3,4,7,19] to simulate the mould filling problems for casting and plastics injection
processes.

Since the primary target in this research is die casting, which generally involves the filling of
the thin wall cavities, it is felt necessary to summarise some of the more significant works on
this subject. Compared with the thick castings, little work has been performed in the field of
thin wall cavity filling analysis. The main reason is that these kind of parts have generally
complex geometries, such as transmission housing, engine covers, etc., in which the part
thickness is much smaller than the global dimensions. The conventional numerical discretisa-
tion results in a highly distorted mesh, which often causes numerical instabilities. Some recent
work has used a shell element approach similar to those used in polymer injection moulding
[20]. Zhang et al. [12] used a potential flow theory and took the pressure as a primary variable
to model the flow behaviour in thin wall castings. They assumed that the flow is invicid and
irrotational. Using the shell element idea, other works [2,21–23] formulated the two-dimen-
sional Navier–Stokes equations in local elements, then transformed them into a global
co-ordinate system. Results have been obtained for relatively simple geometries using these
models. However, such simplified models will fail to predict the flow behaviour in the parts
having large curvature and complex geometries, therefore the validity of the velocity transfor-
mation still needs to be proved.

A three-dimensional finite element model is favoured in this work in order to predict the
flow behaviour for cavity filling of complex shapes, including thin wall cavity filling. Several
reasons have motivated this choice. Among them are (1) the theory for the two-dimensional
shell approach is applicable only for highly viscous flow, which is no longer valid for casting
processes; (2) parts have more and more complex geometry and many of them have thin and
thick sections simultaneously, therefore three-dimensional models are more suitable and can be
applied to parts of arbitrary shapes; (3) from the mesh point of view, the shell mesh is not
trivial for complex parts, while the three-dimensional one is much more straightforward.

The three-dimensional model developed in the current work is initially built to simulate the
thin wall casting filing. However, it can be applied to thick parts as well. The main features of
the model are: (1) mixed finite element formulation solving the Navier–Stokes equations for
transient incompressible viscous flow; (2) volume tracking technique developed in three-dimen-
sional unstructured meshes for capturing the flow front position during filling.

2. MATHEMATICAL MODELS

As discussed in the previous section, there are generally two categories of numerical models to
treat the discontinuity due to the presence of interface between the liquid metal and the air
(flow fronts) using the fixed mesh concept. The first associates the flow front position to a
specific value of a pseudo-concentration function defined in the entire domain including air,
and the flow front can be captured by solving the hyperbolic transport equation. A flow
solution in the entire domain including air or a portion of areas occupied by air needs to be
performed [3,4,7,18,19]. This approach implies that the flow solver has to deal with the
discontinuity of the material properties across the interface. The second approach solves the
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flow equations only in the filled region and the flow front location is determined by the volume
tracking method, which consists of evaluating the flow rate entering and exiting each element
across or connecting to the flow front [5,13,14]. A filling factor is defined to represent the
filling state of each element.

The second approach is adopted in the present study, and only the filled region is considered
for solving the flow equations. This eliminates the numerical difficulties generated by the
discontinuity of the material properties across the moving interface when solving the flow
equations.

2.1. Flow equations

The momentum and mass conservation of a Newtonian fluid flow are described by the
Navier–Stokes equations:

r
�(u
(t

+u ·9u
�

= −9p+9 · [m(9u+9uT)]+rg on V, (1)

9 ·u=0 on V, (2)

where t, r, u, p, m denote the time, density, velocity vector, pressure and viscosity respectively,
and rg is the gravity force.

2.2. Boundary conditions

As in any differential equations, the solution of the Navier–Stokes equations requires the
appropriate boundary conditions specified on the boundary of the flow domain. Figure 1
shows a two-dimensional scheme illustrating the various boundaries involved in a filling
process.
Typically, the following boundary conditions are imposed:

(a) At the inlet where the flow enters into the cavity, the velocity vector is imposed,

Figure 1. Two-dimensional schematic of a mould cavity.
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Figure 2. Illustration of the friction model.

u= ū on Ginlet. (3)

(b) At the moving front, the surface tension is neglected and the normal surface stress
boundary condition is expressed as:

fn= −p+2m
�(un

(n
�

=p0 on Gfront, (4)

where fn is the normal stress, p is the pressure on the flow front surface, p0 is the atmosphere
pressure and un is the normal velocity at the front.

Since the flow in castings has a very high Reynolds number, it is reasonable to assume that
the viscous term in the surface stress condition is negligible. This reduces the surface stress
condition to a simple Dirichlet-type condition on pressure,

p=p0. (5)

It should be noted that the situation may become more complicated if the venting of the
mould is not adequate or if the air is trapped in the cavity. In such a case, the air pressure
increases with time and the flow properties of air play an important role in determining the
pressure required for the filling as well as the position of the flow front. The perfect venting
condition is assumed for the simulations presented. This means that the air can escape from
the mould wall without resistance.

(c) On the mould wall, velocity boundary conditions are considered as either no-slip, where
u=0 at the wall, or slip with or without friction, where the normal velocity un=u·n=0. The
friction ft, can be evaluated as a function of the tangent velocity ut at the wall,

ft= f(ut) on Gwall. (6)

The function f is dependent on the flow regime and the ratio between the mesh size and the
boundary layer thickness (see Figure 2). If the thickness of the boundary layer is much smaller
(more than one order of magnitude) than the mesh size, a free-slip condition is used. If the
mesh size is about the same order as the boundary layer, a partial-slip condition with friction
is applied. Ideally, one should mesh from the mould wall, refining the boundary layer to
capture the large variation of the velocity fields in such a layer. Unfortunately, with current
computer powers, it is almost impossible to mesh the boundary layer fine enough to model the
high gradient of the velocity field near the mould wall.
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To make a proper choice about the type of slip boundary conditions, one has to evaluate the
boundary layer thickness. Examples can be found in classical handbooks for simplified
situations. For example, if we approximate the boundary layer in castings by a fluid passing
around a simple flat plate parallel to the flow, the thickness of such a boundary layer can be
evaluated by the following expression [24]:

d:5
'nL

u
, (7)

where n, L and u represent kinematic viscosity, plate length and velocity magnitude respec-
tively. If the plate is 10 cm long, the velocity is 10 m s−1 and the kinematic viscosity is
1.0×10−5 m2 s−1, the boundary layer thickness is 1.58 mm. This is the typical size of the
mesh used in filling simulations. Therefore, in most cases a slip boundary condition with
friction is imposed to mimic the boundary layer effects.

In practice, the friction is found to be extremely sensitive and very difficult to evaluate for
most filling analysis, particularly for the gravity casting process where the filing velocity is
directly determined by the ratio of the gravity force and the friction of the mould walls.
Furthermore, the friction affects the flow front movement near the mould walls. Since the
present paper is limited to presenting the main features of a three-dimensional filling model, no
details are given here concerning the sensitivity of the friction. The effects of the friction on
mould filling will be investigated in a separate paper. In this work, the function f is assumed
to be proportional to the quantity �ut�ut:

ft= f(ut)= −C �ut�ut, (8)

where C is the friction coefficient.

2.3. Turbulence model

Since the flow encountered in casting filling is typically turbulent, a proper choice of the
turbulent model is needed to ensure a reasonable prediction of the turbulence effects.

Considering the available computer power and the complexity of the industrial parts, this
study is mainly interested in zero equation models, i.e. algebraic models. Currently, the
Smagorinsky model [25–27] is implemented to evaluate the eddy viscosity according to

mt=ah2�9u+9uT�, a=0.01, (9)

where mt is the eddy viscosity and h is the size of the elements.

3. NUMERICAL MODELS

The numerical model developed in this work comprises two numerical methods having the
distinct nature and theoretical background. The finite element method is utilised for flow
modelling, while the volume tracking method is developed for flow front tracking. Both
methods are described in the following sections, as well as their coupling procedure.

3.1. Flow modelling

3.1.1. The 6ariational form. The variational form is the starting point for building a finite
element discretisation of any PDE system. A Galerkin-type weighting function is used here for
constructing the variational form denoted w. The weighting functions for the velocity vector
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and pressure scalar are denoted as y and q respectively, and the final weak form after the
integration by parts can be written as:

w=
&

V

�
r
(u
(t

+ru ·9u−rg
�

y dV+
&

V
[m(9u+9uT):(9y+9yT)] dV−

&
V

p9 ·y dV

+
&

V
9 ·uq dV−

&
(V

(ytft) dGw−
&
(V

(ynfn) dGf, Öy, q, (10)

where

ft=m
�(ut

(n
+
(un

(t
�

, fn= −p+2m
(un

(n
,

and yt, yn denote the tangent and normal components of y respectively, and Gf and Gw

represent the moving flow front and the mould wall boundaries. The friction conditions ft on
the mould walls as well as the normal stress condition fn are discussed in the previous sections.

3.1.2. Finite element implementation. A mixed finite element formulation based on a four
node tetrahedral P1+/P1 elements [28–30] has been implemented in this work (see Figure 3).

This element, having a fifth node in its centroid, satisfies the Brezzi–Babuska conditions,
which are necessary to ensure a stable solution for the Navier–Stokes equations using the
classical Galerkin method. In addition, it represents several important advantages: (1) the four
node element provides a minimum dimension of the element matrix compared with other
three-dimensional finite elements; and (2) tetrahedral elements have a great ability to represent
the complex geometries. Since the element is linear, the mesh refinement algorithm can be
easily implemented in the future.

For a given element, a fifth node at the centroid is considered to construct the piecewise
linear approximation (P1+) for the velocity field. This decomposes the element into four

Figure 3. Four node P1+/P1 element.
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subtetrahedrons. The trial function for velocity is constituted by four linear components and
a bubble function. The pressure is defined linearly using the four vertices. In this work, a
bubble function being zero at the element boundary and piecewise-linear on subtetrahedrons
was chosen for the sake of the numerical integration.

u= %
4

i=1

Ni ·ui+Nb·ub, Nb=4·Min(N1, . . . , N4), (11)

p= %
4

i=1

Ni ·pi, (12)

where ui and ub are velocity vectors at the vertices and the centroid respectively, Pi is pressure
at the vertices, Ni is the component of the linear trial functions and Nb is the bubble function.

Even though the centroid is used as a part of the velocity field approximation when building
the elementary matrices, it then can be eliminated by the ‘static condensation’ procedure [29]
at element level, leading to the initial four node tetrahedrons.

The finite element discretisation of the flow equations leads to a highly non-linear system.
The Newton–Raphson method is implemented to linearise the equations.

The classic first-order Euler implicit scheme has been used to evaluate the transient terms,
which are�(v

(t
�n+1

=
vn+1−vn

Dt
. (13)

The matrix form of the algebraic system resulted from the discretisation can be expressed as:

[M ]
{vn+1−vn}

Dt
+ [K ]{vn+1}={Fn+1}, (14)

where v represents an unknown vector, including the velocity components and pressure field
{u, 6, w, p}, F is a source term that involves gravity or any other body forces. [M ] and [K ] are
the mass and tangent matrices respectively. Subscripts n and n+1 denote the previous and
current time steps respectively.

3.2. The 6olume tracking method

For a general filling problem, the flow front motion, as a moving interface, can be
represented by a volume fraction function f(x, t) defined in the entire calculation domain (also
called pseudo-concentration function, see [18]). The value of the f function is unity for the
filled area and zero elsewhere. Therefore, the discontinuity in the f(x, t) function represents
moving interface locations. The motion of the moving interface transported by a velocity field
(u) is governed by

Df(x, t)
Dt

=
(f
(t

+u ·9f=0, (15)

where Df/Dt is the material derivative and f(x, t) is Lagragian invariant. Equation (15)
governs the movement of an interface and constitutes the basis of all front tracking techniques.

Moving interfaces are obtained by ensuring the discontinuity of the function f. This requires
a special numerical treatment because none of the classical numerical methods are suitable for
solving a scalar function with singularities. Two types of approaches can be found in the
literature. The first solves Equation (15) directly by various numerical techniques, such as the
Lesaint–Raviart [19], or smoothing the f function [3,18]. The second approach transforms
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Plate 1. Flow front positions and velocity fields for filling a rectangular plate.
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Plate 2. Flow front positions and corresponding velocity vectors for a step cavity filling.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29(7) (1999)



Plate 2 (Continued)
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Plate 3. Flow front positions and velocity magnitudes of a die casting part.
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Plate 4. Flow front positions and velocity magnitudes of a connector housing.
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Equation (15) into a control volume concept and solves the hyperbolic equation by evaluating
flow quantity of control volumes [14]. All volume tracking methods can be derived from the
latter approach. In the present study, a volume tracking method is developed to track the flow
front movement.

Even though the volume tracking method has been widely used and applied for various
academic and engineering problems, it is generally perceived as a heuristic tool, without
mathematical formalism and rigour. Recently, Rider et al. [14] demonstrated in a rigorous
manner, the mathematical background of the volume tracking method which is often hidden
by the geometrical manipulations involved. In fact, the volume tracking method is not limited
to rectangular grids of finite differences. Conceptually, it can be applied to any type of mesh
and implemented with most numerical schemes, such as finite elements and finite differences.
An outline of the volume tracking method is given below to facilitate the understanding of its
theoretical background. As one can see, no specific numerical scheme and mesh type is
invoked in the demonstration.

For a given control volume i, which can be taken as a natural element resulting from a finite
element discretisation, a piecewise constant value Fi is define to represent the filling state of
element i

Fi=
1
Vi

&
i

f(x, t) dVi, (16)

where the limits of integration are restricted to the volume of an element Vi.
Therefore, the values of Fi, constant for each element, are referred to as the filling states of

each element. According to this definition, the value of Fi (often called the ‘filling factor’)
varies between 0 and 1. An element whose filling factor Fi=1 is completely filled, while an
empty element is represented by Fi=0. A partially filled element has a filling factor between
0 and 1. The flow front is evidently contained within the partially filled elements.

Equation (15) is now integrated over the volume Vi,

Vi

(Fi

(t
+
&

Vi

u ·9f dVi=0. (17)

Considering the continuity equation, 9 · u=0, Equation (17) can be written as

Vi

(Fi

(t
+
&

Vi

9 · (uf ) dVi=0. (18)

Discretising in time with finite differences, and applying the Gauss theorem transforms (18)
into:

Fi
n+1=Fi

n−
Dt
Vi

&
(Vi

(uf ) ·nou dS, (19)

where Fi
n+1 and Fi

n are the filling factors at time steps n and n+1, S is all surfaces of element
i and nou is the outward unit normal.

The surface integral that appeared in (19) can be evaluated as a discrete sum of fluid
quantity flowing in and exciting from all faces of element i

−
Dt
Vi

&
(Vi

(uf ) ·nou dS=
1
Vi

%
j

qijDt ; qij= (uj ·nin) Sj, (20)

where qij is the flow rate of fluid entering into element i across face j, and uj, nin and Sj are
velocity vector, inward unit normal and area of face j respectively.
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Figure 4. Scheme of calculation of the fluid quantity flowing into an element.

The volume tracking methods solves Equation (19) for each element instead of solving
Equation (15) directly.

Since the tetrahedral elements are used for solving the Navier–Stokes equations in the
present work, all implementation procedures for the volume tracking method are developed
based on the same element topology.

In order to achieve a high precision of a volume tracking scheme, a reconstruction of the
flow front interface contained by all interface elements, where 0BFiB1 is necessary to
evaluate accurately its shapes and locations. The reconstruction includes the evaluation of the
interface normal and the volume matching operation. The front interface within an element
can be expressed mathematically by

x ·n=b, (21)

where x represents any point on the interface, n is the unit normal of the interface and b is the
interface constant.

The interface normal is calculated by

n=9f/�9f � where f is the filling factor. (22)

Since the filling factor is a piecewise content function, a least square procedure is imple-
mented to calculate this vector.

Knowing the unit normal vector of the front interface and given a filling factor for an
element, the exact position of the interface plan can be evaluated by matching the filled volume
with the given filling factor. This volume matching involves some geometrical calculations,
such as calculating the volume bounded by several polygon of three or four sides, and
evaluation of the interaction points between the interface plane and the tetrahedral element.
Figure 4 shows the case of tetrahedral element cut by the flow front surface. The filled portion
is delimited by four faces (abc, abed, cbef and acfd) and the flow front surface (def ). Once the
front interface is reconstructed, the front advection can be realised by evaluating the flux

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 877–895 (1999)
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across all faces using expression (19). As the movement of the flow front is limited so as not
to exceed more than one layer of elements within each time step, only elements near or across
the flow front are used to evaluate the front movement.

In conclusion, the major contribution of this work is to combine a three-dimensional finite
element scheme with a robust volume tracking technique. Instead of using rectangular grids as
in conventional volume tracking techniques, the use of a tetrahedral mesh allows a much more
flexible geometrical representation of the complex parts. The robustness of the volume tracking
technique for unconstructured meshes is proved by all tests conducted and the combination of
this technique with a FEM model provides an encouraging future for incorporate mesh
adaptivity in order to increase the model precision with complex physical situations.

3.3. Coupling of the flow solution with front tracking

Another important aspect in solving the mould filling problems is the coupling between the
flow solver and the front tracking operation. The flow solution is used to move the flow front,
while the moving boundary delimits the flow domain, consequently affecting the flow solution.
A proper choice of the time step is crucial to ensure an accurate solution within the constraints
of the computation time. In most filling analysis, the flow front is subject to large distortions,
separation, vortex formation, etc., and the geometry of the part can be very complex.
Therefore, the concept of constant time step in classic CFD problems leads often to large
variations of Courant number Co= (uDt)/h (also referred to as the CFL criterion) during a
filling analysis. A small Courant number (Co�1) will lead to a large computation time and
become unusable for some complicated parts. On the other hand, using a large Courant
number (Co\1) causes the numerical scheme to become unstable and compromise the
solution accuracy. A variable time step is preferable for most filling problems. The time step
selection can be performed according to:

Dt=Co Min(hi/ui); i=1, number of elements across or connected to the front,
(23)

where hi is the characteristic length of an element and ui is the velocity magnitude in the same
element.

Based on experience, a Courant number of 0.5 is recommended in the current study.
For every time step, a solution of the Navier–Stokes equations is performed with a

Newton-type iteration in order to obtain the velocity distribution in the filled domain. Based
on the velocity field, the fill factor of each element can be evaluated by expression (19). Finally,
a newly filled domain is defined using the updated fill factor field with a reconstruction of the
flow front. An iterative procedure is performed up to the end of the filling phase.

4. EXAMPLES AND DISCUSSION

As the filling problems involve the coupling of the flow equations and moving flow fronts, it
is very difficult to establish benchmark tests to validate the entire numerical model. Several
researchers have performed experimental set-ups, trying to obtain true data to compare with
the numerical predictions [8,31,32]. The difficulties of using these experiments come from the
lack of repeatability of the data and accurate control of the operating conditions. The
alternative to this is to use a given velocity field, from which an analytical solution can be
derived for the flow front position. In the following section, a 2D analytical test is presented
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for validating the front tracking model. Other examples are presented to validate the entire
numerical model and demonstrate its capabilities.

4.1. Analytical case

The example is a unit square where a velocity field is imposed as:

u= −y,

6= −x, (24)

Since the velocity (24) is steady, the particle pathlines and the streamlines are coincident, and
governed by

y2=x2+c, (25)

where c is a constant.
The magnitude of the velocity vector �U � is equal to (x2+y2)1/2. The initial front is assumed

as straight lines ab and bc (see Figure 5). As the fluid fills the square cavity from the top and
right sides, the velocity is diminishing and vanishes at the origin o. Since the particle at the
point b will flow along the square diagonal according to (25), the analytical solution of the
non-dimensional displacement (d/D) versus filling time can be obtained:

d/D=1−e− t, (26)

where d is the particle displacement �bb %� and D is the length of the diagonal �bo � (see Figure
5).

Figure 5. Validation test with a given velocity field.
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Figure 6. Plotted flow front positions (above the diagonal) and streamlines (below the diagonal).

The numerical flow fronts and the streamlines that are coincident with the particle pathlines
are plotted in Figure 6. As expected, the front advancement along the diagonal is slowed down
due to the imposed velocity.

In order to compare with the analytical solution, the flow front position at the diagonal is
collected at various times. A very good agreement between the numerical prediction and
analytical solution is obtained during the entire filling process (see Figure 7).

Figure 7. Comparison of the numerical prediction with the analytical solution.
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Figure 8. Geometry of the rectangular plate.

4.2. Filling of a rectangular plate

The filing of a three-dimensional rectangular plate of dimension 10 cm (width)×15 cm
(length)×0.2 cm (height) is simulated. The plate has a narrow inlet of 2 cm width, which
creates a sudden expansion when the liquid flows from the gate to the cavity (see Figure 8).
The main objective of this example is to illustrate the inertia effect on the filling behaviour
when the liquid is injected at high speed.

Since the rectangular plate is placed horizontally, the gravity term is neglected. The inlet
velocity is uniform with a magnitude of 1 m s−1. The friction boundary condition is imposed.
Two different cinematic viscosities 0.1, 0.00001 m2 s−1 are simulated. The corresponding
Reynolds numbers are 0.2, 2000 respectively, based on the entrance width. The figures in Plate
1 show the flow front positions for both cases at different filling stages. The red represents the
filled area. Figures on the first row correspond to the viscous case (Re=0.2), where the viscous
force is dominant over the flow momentum. The fluids fills into the large cavity and expands
uniformly in all directions. The predicted filling patterns change from a circle line to a straight
one at the end. This type of filling behaviour is similar to that encountered in injection
moulding of plastics and is well-verified by experiments. For the second case, when the liquid
enters into the cavity, the flow is subjected to a sudden expansion. Since the inertia is dominant
over the viscous forces and no vorticity is generated in the flow, the fluid behaves as ‘rigid
body’, without spreading until it hits the wall at the top. After the jet hits the top of the cavity,
the main flow stream is split into two symmetrical branches from the ‘stagnation point’ (see
Plate 1). These streams turn back and join the main flow at the bottom of the cavity. Two air
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pockets are formed at the end. The second and third rows represent the flow front positions
and corresponding velocity vectors for the inertia case (Re=2000). The inertia effect is clearly
shown through this simulation. Finally, the critical areas for air entrapment are successfully
predicted (‘holes’ formed at the end of the filling).

4.3. Filling of a step ca6ity

A 3D cavity is simulated to illustrate the gravity effects as well as the influence of the inertia.
The geometry and the dimensions are shown in Figure 9. This example was first suggested by
Gao et al. [3,4] to study the coupling effects of the inertia and gravity on the flow front
movements. The cavity is fed by a fluid under a uniform velocity of 1 m s−1. A friction
boundary condition is applied at all surfaces of the mould. The kinematic viscosity used in this
example is set to 0.0001 m2 s−1, which leads to a Reynolds number of 300. To evaluate the
gravity effects for a free-surface flow, the Froude number (Fr) is generally used as a
characteristic number to represent the ratio between the inertia and the gravity forces. In this
simulation, Fr=1.84. This indicates that the gravity and inertia forces are at the same order
and the flow will be affected by both forces. The numerical results are shown only on the
middle plane (x–y) for the sake of display.

The flow front positions and the velocity fields are represented in Plate 2 at different filling
times. The filling time (t/T) indicated below each pair of figures in Plate 2 is the ratio of the
filling time (t) over the total filling time (T). Under such a definition, t/T=0 represents the
initial filling state and t/T=1.0, the complete filling state. Figure 10 shows the maximum
velocity as a function of the filling time. The velocity shown is non-dimensional, scaled by
dividing the velocity over the inlet velocity. At the beginning of the filling stage, the flow
accelerates and ‘falls’ towards the bottom under the effects of the gravity. The maximum
velocity increases up to the three times as big as the inlet velocity (see Figure 10 at point 2 and
Plate 2 at t/T=0.33). When the flow hits the lower step, the flow is slowed down and the
maximum velocity is consequently reduced (see points 3 and 4). After the collision with the
lower step, the flow rises as a jet due to the dominant inertia effects. The flow is then
decelerated by gravity acting in the opposite direction. The maximum velocity is reduced to
1.97 at t/T=0.50. The gravity forces the main flow to stream preferably in the horizontal
direction. After the flow meets the upper step of the cavity, a wavy front is generated as the

Figure 9. Geometry of the step cavity.
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Figure 10. Plot of the maximum velocity at various filling time.

liquid flows back (at t/T=0.92). Figure 10 shows clearly the flow’s acceleration and decelera-
tion caused by the coupling effects of the inertia and gravity during the filling process. Some
characteristic points are shown in Figure 10:

� At t/T=0.33 (point 2), the flow reaches its maximum velocity just before it encounters the
lower step;

� From t/T=0.33 to t/T=0.55 (point 5), flow rising in the opposite direction of the gravity
is decelerated;

� From t/T=0.71 (point 6) to t/T=0.84 (point 8), the flow is slowed down due to its
collision with the upper step;

� In the last portion (from point 8 to point 10), the flow is accelerated until the complete
filling.

4.4. Filling of a three-dimensional experimental part

In order to demonstrate the capabilities of the numerical prediction and validate the model
in a realistic context, an experimental die casting part made with aluminium, is simulated. The
part has a three-dimensional complex shape and the flow encounters large thickness variations
(the thickness for runner, gate and cavity are 10, 1 and 2.3 mm respectively). Since the
geometry is symmetrical (see Plate 3), only half the part is used for performing the calculations.

Table I. Material properties used in the simulations

Properties ViscosityDensity
(kg m−3) (Pa s)

Section 4.4: experimental part 2685.00 3.0×10−3

Section 4.5: connector housing 2685.00 3.0×10−3
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The material properties are given in Table I. The part was meshed with 15735 tetrahedral
elements. Since the viscous boundary layer is very thin compared with the mesh size, a slip
boundary condition at the wall is assumed. The algebraic model described previously is
used to calculate the eddy viscosity. The figures in Plate 3 show the filled portions and
corresponding velocity magnitude at different filling stages. The shaded area in the figures
on the left represent the portion filled by the fluid. Figures on the right show the velocity
magnitudes as filling progresses. The red indicates the maximum velocity and the blue the
minimum. As the runner is ten times thicker than the gate (10–1 mm), the liquid metal fills
the runner first while a very small quantity flows into the front portion of the cavity. Once
the runner is filled, the main flow stream starts filling the lateral part of the cavity due to
the inertia effects. As the filling progresses, two flow streams meet each other at the centre,
along the symmetry line. Two isolated holes are consequently created (see Plate 3). These
isolated areas often entrap air and give rise the porosity in the final part. Another potential
defect area is the ‘ears’ perpendicular to the top surface of the part. Due to the inertia, the
liquid first fills the entire top surface before turning into the ‘ears’. Therefore, such a
numerical model can be used to predict the potential casting problems and help optimise
the die and mould design.

4.5. Filling simulation of a connector housing

Filling analysis of an industrial part is performed using the current model. The part is a
electrical connector housing made with aluminium 356. The material properties are shown
in Table I. Since the part consists of two symmetrical connectors, only half of the geometry
is meshed using tetrahedral elements. The mesh used for filling analysis contains 8299 nodes
and 28736 elements. The eddy viscosity is calculated via the algebraic model. The figures in
Plate 4 show the various filling stages and corresponding velocity magnitudes. The shaded
area in figures on the left represent the portion filled by the fluid. Figures on the right
show the velocity magnitudes as filling progresses. The red indicates the maximum velocity
and the blue the minimum. Potential defect areas due to the multiple fronts merging are
predicted, such as those indicated in Plate 4. The analysis provides detailed information
on flow behaviour (maximum velocity, pressure requirement, etc.), which can be used to
determine the proper dimensions of runners and gates, as well as the positions of the
overflows.

5. CONCLUSION

A three-dimensional finite element model combined with a volume tracking method has
been developed to simulate the cavity filling. A mixed formulation based on a four node
tetrahedral element with a bubble function at the centroid (P1+/P1) is employed and
proved to be stable and effective in solving the flow with moving flow fronts. The volume
tracking method developed in the frame work of three-dimensional unstructured meshes has
shown its robustness for complex flow front motions. The combination of the FEM and
volume tracking has been shown to be a very promising choice for handling mould filling
problems. Examples have been presented to validate the numerical model and demonstrate
its capabilities. Future work shall include the implementation of mesh adaptivity to improve
interface reconstruction accuracy.
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